Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1.

Identifieur interne : 001670 ( Main/Exploration ); précédent : 001669; suivant : 001671

The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1.

Auteurs : Xiaomeng Long [États-Unis] ; Yenshou Lin ; Sara Ortiz-Vega ; Susann Busch ; Joseph Avruch

Source :

RBID : pubmed:17470430

Descripteurs français

English descriptors

Abstract

The small GTPase Rheb is a positive upstream regulator of the target of rapamycin (TOR) complex 1 in mammalian cells and can bind directly to TOR complex 1. To identify the regions of the Rheb surface most critical for signaling to TOR complex 1, we created a set of 26 mutants wherein clusters of 1-5 putative solvent-exposed residues were changed to alanine, ultimately changing 65 residues distributed over the entire Rheb surface. The signaling function of these mutants was assessed by their ability, in comparison to wild type Rheb, to restore the phosphorylation of S6K1(Thr389) when expressed transiently in amino acid-deprived 293T cells. The major finding is that two mutants situated in the Rheb switch 2 segment, Y67A/I69A and I76A/D77A, exhibit a near total loss of function, whereas extensive replacement of the switch 1 segment and other surface residues with alanines causes relatively little disturbance of Rheb rescue of S6K1 from amino acid withdrawal. This is surprising in view of the minimal impact of guanyl nucleotide on Rheb switch 2 configuration. The loss of function Rheb switch 2 mutants are well expressed and exhibit partial agonist function in amino acid-replete cells. They are unimpaired in their ability to bind GTP or mammalian (m)TOR in vivo or in vitro, and the mTOR polypeptides retrieved with these inactive Rheb mutants exhibit kinase activity in vitro comparable with mTOR bound to wild type Rheb. We conclude that Rheb signaling to mTOR in vivo requires a Rheb switch 2-dependent interaction with an element other than the three known polypeptide components of TOR complex 1.

DOI: 10.1074/jbc.M610736200
PubMed: 17470430
PubMed Central: PMC3205911


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1.</title>
<author>
<name sortKey="Long, Xiaomeng" sort="Long, Xiaomeng" uniqKey="Long X" first="Xiaomeng" last="Long">Xiaomeng Long</name>
<affiliation wicri:level="1">
<nlm:affiliation>Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston 02114, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston 02114</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Yenshou" sort="Lin, Yenshou" uniqKey="Lin Y" first="Yenshou" last="Lin">Yenshou Lin</name>
</author>
<author>
<name sortKey="Ortiz Vega, Sara" sort="Ortiz Vega, Sara" uniqKey="Ortiz Vega S" first="Sara" last="Ortiz-Vega">Sara Ortiz-Vega</name>
</author>
<author>
<name sortKey="Busch, Susann" sort="Busch, Susann" uniqKey="Busch S" first="Susann" last="Busch">Susann Busch</name>
</author>
<author>
<name sortKey="Avruch, Joseph" sort="Avruch, Joseph" uniqKey="Avruch J" first="Joseph" last="Avruch">Joseph Avruch</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17470430</idno>
<idno type="pmid">17470430</idno>
<idno type="doi">10.1074/jbc.M610736200</idno>
<idno type="pmc">PMC3205911</idno>
<idno type="wicri:Area/Main/Corpus">001710</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001710</idno>
<idno type="wicri:Area/Main/Curation">001710</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001710</idno>
<idno type="wicri:Area/Main/Exploration">001710</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1.</title>
<author>
<name sortKey="Long, Xiaomeng" sort="Long, Xiaomeng" uniqKey="Long X" first="Xiaomeng" last="Long">Xiaomeng Long</name>
<affiliation wicri:level="1">
<nlm:affiliation>Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston 02114, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston 02114</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Yenshou" sort="Lin, Yenshou" uniqKey="Lin Y" first="Yenshou" last="Lin">Yenshou Lin</name>
</author>
<author>
<name sortKey="Ortiz Vega, Sara" sort="Ortiz Vega, Sara" uniqKey="Ortiz Vega S" first="Sara" last="Ortiz-Vega">Sara Ortiz-Vega</name>
</author>
<author>
<name sortKey="Busch, Susann" sort="Busch, Susann" uniqKey="Busch S" first="Susann" last="Busch">Susann Busch</name>
</author>
<author>
<name sortKey="Avruch, Joseph" sort="Avruch, Joseph" uniqKey="Avruch J" first="Joseph" last="Avruch">Joseph Avruch</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Guanosine Triphosphate (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Monomeric GTP-Binding Proteins (chemistry)</term>
<term>Monomeric GTP-Binding Proteins (metabolism)</term>
<term>Monomeric GTP-Binding Proteins (physiology)</term>
<term>Mutation (MeSH)</term>
<term>Neuropeptides (chemistry)</term>
<term>Neuropeptides (physiology)</term>
<term>Peptides (chemistry)</term>
<term>Protein Kinases (metabolism)</term>
<term>Ras Homolog Enriched in Brain Protein (MeSH)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (MeSH)</term>
<term>Transfection (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Guanosine triphosphate (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Neuropeptides (composition chimique)</term>
<term>Neuropeptides (physiologie)</term>
<term>Peptides (composition chimique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéine homologue de Ras enrichie dans le cerveau (MeSH)</term>
<term>Protéines G monomériques (composition chimique)</term>
<term>Protéines G monomériques (métabolisme)</term>
<term>Protéines G monomériques (physiologie)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Sérine-thréonine kinases TOR (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transfection (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Monomeric GTP-Binding Proteins</term>
<term>Neuropeptides</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Guanosine Triphosphate</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Protein Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Monomeric GTP-Binding Proteins</term>
<term>Neuropeptides</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Neuropeptides</term>
<term>Peptides</term>
<term>Protéines G monomériques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Guanosine triphosphate</term>
<term>Protein kinases</term>
<term>Protéines G monomériques</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Neuropeptides</term>
<term>Protéines G monomériques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Ras Homolog Enriched in Brain Protein</term>
<term>Sequence Homology, Amino Acid</term>
<term>Signal Transduction</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transfection</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Mutation</term>
<term>Protéine homologue de Ras enrichie dans le cerveau</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Transduction du signal</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The small GTPase Rheb is a positive upstream regulator of the target of rapamycin (TOR) complex 1 in mammalian cells and can bind directly to TOR complex 1. To identify the regions of the Rheb surface most critical for signaling to TOR complex 1, we created a set of 26 mutants wherein clusters of 1-5 putative solvent-exposed residues were changed to alanine, ultimately changing 65 residues distributed over the entire Rheb surface. The signaling function of these mutants was assessed by their ability, in comparison to wild type Rheb, to restore the phosphorylation of S6K1(Thr389) when expressed transiently in amino acid-deprived 293T cells. The major finding is that two mutants situated in the Rheb switch 2 segment, Y67A/I69A and I76A/D77A, exhibit a near total loss of function, whereas extensive replacement of the switch 1 segment and other surface residues with alanines causes relatively little disturbance of Rheb rescue of S6K1 from amino acid withdrawal. This is surprising in view of the minimal impact of guanyl nucleotide on Rheb switch 2 configuration. The loss of function Rheb switch 2 mutants are well expressed and exhibit partial agonist function in amino acid-replete cells. They are unimpaired in their ability to bind GTP or mammalian (m)TOR in vivo or in vitro, and the mTOR polypeptides retrieved with these inactive Rheb mutants exhibit kinase activity in vitro comparable with mTOR bound to wild type Rheb. We conclude that Rheb signaling to mTOR in vivo requires a Rheb switch 2-dependent interaction with an element other than the three known polypeptide components of TOR complex 1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17470430</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>282</Volume>
<Issue>25</Issue>
<PubDate>
<Year>2007</Year>
<Month>Jun</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1.</ArticleTitle>
<Pagination>
<MedlinePgn>18542-51</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The small GTPase Rheb is a positive upstream regulator of the target of rapamycin (TOR) complex 1 in mammalian cells and can bind directly to TOR complex 1. To identify the regions of the Rheb surface most critical for signaling to TOR complex 1, we created a set of 26 mutants wherein clusters of 1-5 putative solvent-exposed residues were changed to alanine, ultimately changing 65 residues distributed over the entire Rheb surface. The signaling function of these mutants was assessed by their ability, in comparison to wild type Rheb, to restore the phosphorylation of S6K1(Thr389) when expressed transiently in amino acid-deprived 293T cells. The major finding is that two mutants situated in the Rheb switch 2 segment, Y67A/I69A and I76A/D77A, exhibit a near total loss of function, whereas extensive replacement of the switch 1 segment and other surface residues with alanines causes relatively little disturbance of Rheb rescue of S6K1 from amino acid withdrawal. This is surprising in view of the minimal impact of guanyl nucleotide on Rheb switch 2 configuration. The loss of function Rheb switch 2 mutants are well expressed and exhibit partial agonist function in amino acid-replete cells. They are unimpaired in their ability to bind GTP or mammalian (m)TOR in vivo or in vitro, and the mTOR polypeptides retrieved with these inactive Rheb mutants exhibit kinase activity in vitro comparable with mTOR bound to wild type Rheb. We conclude that Rheb signaling to mTOR in vivo requires a Rheb switch 2-dependent interaction with an element other than the three known polypeptide components of TOR complex 1.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Long</LastName>
<ForeName>Xiaomeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston 02114, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Yenshou</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ortiz-Vega</LastName>
<ForeName>Sara</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Busch</LastName>
<ForeName>Susann</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Avruch</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DK040561</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK17776</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 DK040561-12</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA73818</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA073818</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 DK017776</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009479">Neuropeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490211">RHEB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076205">Ras Homolog Enriched in Brain Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>86-01-1</RegistryNumber>
<NameOfSubstance UI="D006160">Guanosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020559">Monomeric GTP-Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006160" MajorTopicYN="N">Guanosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020559" MajorTopicYN="N">Monomeric GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009479" MajorTopicYN="N">Neuropeptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076205" MajorTopicYN="N">Ras Homolog Enriched in Brain Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17470430</ArticleId>
<ArticleId IdType="pii">M610736200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M610736200</ArticleId>
<ArticleId IdType="pmc">PMC3205911</ArticleId>
<ArticleId IdType="mid">NIHMS330704</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oncogene. 2002 Sep 12;21(41):6356-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12214276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2001 Dec;26(12):710-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11738594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jun;5(6):559-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jun;5(6):566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jun;5(6):578-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Sep 1;116(Pt 17):3601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):32493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12842888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2004 Oct;16(10):1105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2004 Sep 14;2004(250):RE13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1993 Jul;18(7):250-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8212134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jun 10;269(23):16333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8206940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 5;273(23):14484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jul 10;94(1):119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9674433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17):17093-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 24;280(25):23433-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15878852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Aug 29;579(21):4763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):471-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16691442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Nov 15;371(2):207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Nov 26;274(48):34493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Apr 15;14(8):895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10783161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 May 4;105(3):345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11348591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 May 4;105(3):357-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11348592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Jun 1;15(11):1383-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2003 Feb;13(2):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12559758</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Boston</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Avruch, Joseph" sort="Avruch, Joseph" uniqKey="Avruch J" first="Joseph" last="Avruch">Joseph Avruch</name>
<name sortKey="Busch, Susann" sort="Busch, Susann" uniqKey="Busch S" first="Susann" last="Busch">Susann Busch</name>
<name sortKey="Lin, Yenshou" sort="Lin, Yenshou" uniqKey="Lin Y" first="Yenshou" last="Lin">Yenshou Lin</name>
<name sortKey="Ortiz Vega, Sara" sort="Ortiz Vega, Sara" uniqKey="Ortiz Vega S" first="Sara" last="Ortiz-Vega">Sara Ortiz-Vega</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Long, Xiaomeng" sort="Long, Xiaomeng" uniqKey="Long X" first="Xiaomeng" last="Long">Xiaomeng Long</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001670 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001670 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17470430
   |texte=   The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17470430" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020